Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            60 and 120 nm thick epitaxial films of isotopically enriched bcc iron (α-57Fe) grown on (100) MgO substrates are studied using x-ray diffraction, reflection high-energy electron diffraction (RHEED), and conversion electron Mössbauer spectroscopy (CEMS). X-ray diffraction and RHEED data indicate that each film behaves as a single crystal material consistent with the relative intensity ratios of the spectral lines observed in the CEMS spectrum. Data further confirm that the easy axis of magnetization lies along the ⟨100⟩ family of directions of the cubic α-iron film. The relevant theory to understand the relative intensities in a magnetic Mössbauer spectrum is outlined and is applied to interpret the intensity ratio of the Mössbauer spectral lines of a more complex hexaferrite magnetic system, BaFe12O19, grown on a single crystal substrate of Sr1.03Ga10.81Mg0.58Zr0.58O19. The conclusion that the magnetic moment in (0001)-oriented epitaxial BaFe12O19 film lies perpendicular to the plane of the substrate is deduced from the absence of the second and fifth lines by comparing the CEMS spectrum of the epitaxial (0001) BaFe12O19 film with the spectrum of a polycrystalline BaFe12O19 powder. Our measurements using CEMS corroborate what is known about the direction of the magnetic easy axis in α-iron and BaFe12O19 and motivate the use of CEMS to probe more complex atomically engineered epitaxial heterostructures, including superlattices.more » « less
- 
            We present an integrated procedure for the synthesis of infinite-layer nickelates using molecular-beam epitaxy with gas-phase reduction by atomic hydrogen. We first discuss challenges in the growth and characterization of perovskite NdNiO3/SrTiO3, arising from post growth crack formation in stoichiometric films. We then detail a procedure for fully reducing NdNiO3 films to the infinite-layer phase, NdNiO2, using atomic hydrogen; the resulting films display excellent structural quality, smooth surfaces, and lower residual resistivities than films reduced by other methods. We utilize the in situ nature of this technique to investigate the role that SrTiO3 capping layers play in the reduction process, illustrating their importance in preventing the formation of secondary phases at the exposed nickelate surface. A comparative bulk- and surface-sensitive study indicates that the formation of a polycrystalline crust on the film surface serves to limit the reduction process.more » « less
- 
            Alkali antimonide semiconductor photocathodes provide a promising platform for the generation of high-brightness electron beams, which are necessary for the development of cutting-edge probes, including x-ray free electron lasers and ultrafast electron diffraction. Nonetheless, to harness the intrinsic brightness limits in these compounds, extrinsic degrading factors, including surface roughness and contamination, must be overcome. By exploring the growth of CsxSb thin films monitored by in situ electron diffraction, the conditions to reproducibly synthesize atomically smooth films of CsSb on 3C–SiC (100) and graphene-coated TiO2 (110) substrates are identified, and detailed structural, morphological, and electronic characterization is presented. These films combine high quantum efficiency in the visible (up to 1.2% at 400 nm), an easily accessible photoemission threshold of 566 nm, low surface roughness (down to 600 pm on a 1 μm scale), and a robustness against oxidation up to 15 times greater than Cs3Sb. These properties lead us to suggest that CsSb has the potential to operate as an alternative to Cs3Sb in electron source applications where the demands of the vacuum environment might otherwise preclude the use of traditional alkali antimonides.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
